Ring Differentiation of the *trans*-Decahydronaphthalene System *via* Chemo-enzymatic Dissymmetrization of Its σ-Symmetric Glycol: Synthesis of a Highly Functionalized Chiral Building Block for the Terpene Synthesis

Naoki Toyooka, Akira Nishino, and Takefumi Momose*

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01, Japan

Abstract: The asymmetric ring differentiation by lipase-catalyzed transesterification of a *meso* decahydronaphthalenediol (1) was accomplished in extremely high optical and chemical yield. The absolute stereochemistry of the corresponding mono-acetate (-)-2 was determined by its conversion into a decalone [(-)-3] and to an octalone [(+)-4], which were key intermediates for the synthesis of (-)-polygodial, (-)-warburganal, and (-)-drimenin.

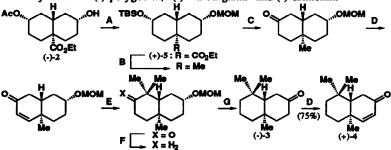
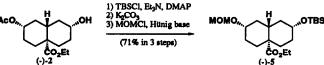

Recently, we have reported the ring differentiation of the azabicyclic ring-crossed *meso* glycol by lipase, and its conversion into a highly functionalized piperidine as a versatile chiral building block for the 3piperidinol alkaloid.¹ In our continuous studies on the development of useful chiral building blocks *via* dissymmetrization of the σ -symmetric compound, we have designed a *meso* decahydronaphthalenediol (1)² and examined its lipase-catalyzed ring differentiation to afford the monoacetate (-)-2 as a new chiral building block for the enantiodivergent synthesis of sesquiterpenes involving a drimane ring skeleton. Although, many stereoselective syntheses of these sesquiterpenes starting from chiral natural sources have been reported,³ our approach can equally synthesize not only both enantiomers of the target natural product but also more highly functionalized terpenes bearing an oxygenated angular appendage⁴ such as maingayic acid⁵ and ajugarin I ~ III.⁶ On the lipase-catalyzed transesterification of 1, the best result was obtained with immobilized lipase AK⁷ in diisopropyl ether (iPr₂O) (Table 1).

Table 1: Lipase-catalyzed transesterification of meso diol 1					
	но",	Н, "ОН	lipase, vinyl acetate, 32~35 °C ⁸ ACO,		нон
	CO ₂ Et		organic solvent		CO ₂ Et
		1			(-)-2
Lipase ^a	solvent	Time (h)	Yield (%) ^b	Optical rotation $([\alpha]_D)^c$	Optical yield (% ee)
AKd	iPr ₂ O	12	96 (99)	-21.4°	>99°
AKd	benzene	12	39 (99)	-21.4°	>99f
AKd	hexane	24	19 (99)	-21.2°	99f
AK	iPr ₂ O	24	89 (99)	-21.2°	99f
PS	iPr ₂ O	24	23 (99)	-20.9°	98f
CCL	iPr ₂ O	24	10 (95)	-20.0°	94f
CE	iPr ₂ O	24	6 (95)	-18.2°	86 ^f
AY	iPr ₂ O	24	17 (94)	-17.2°	81 ^f

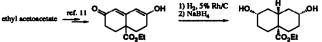
a: Lipase AK (fr. *Pseudomonas fluorescens*), PS (fr. *Pseudomonas cepacia*), CE (fr. *Humicola lanuginosa*) and AY (fr. *Candida rugosa*) were supplied by Amano Pharmaceutical Co., Ltd. We are grateful to Amano Pharmaceutical Co., Ltd. for the generous gift of lipases. CCL (fr. *Candida cylindracea*) was purchased from the Sigma Chemical Co., Ltd. b: Yields in the isolated monoacetate. Yields in parentheses are those based on the conversion rate. c: Optical rotations were taken in chloroform. d: Lipase immobilized on celite was used. e: Determined after benzoylation of (-)-2 by HPLC analysis using a column packed with CHIRALCEL AD (iPrOH : n-hexane 1 : 30). f: Determined based on the value of optical rotation.


4540

The absolute stereochemistry of the mono-acetate (-)-2 was determined by its conversion into a decalone $[(-)-3, [\alpha]_D - 13.8^\circ, \text{ lit.}^9 [\alpha]_D - 12.8^\circ]$ and an octalone $[(+)-4, [\alpha]_D + 25.6^\circ, \text{ lit.}^{10} [\alpha]_D + 7.4^\circ]$ which were key intermediates for the synthesis of (-)-polygodial,⁹ (-)-warburganal⁹ and (-)-drimenin.¹⁰

A: 1) MOMCI, Hünig base (96%); 2) K2CO3; 3) TBSCI, Et3N, DMAP (90% in 2 steps), B: 1) LiAlH4 (95%); 2) I2, Ph3P, imidazole (96%); 3) Zn, AcOH, C: 1) TBAF (87% in 2 steps); 2) PCC (92%), D: LDA, TMSCl then Pd(OAc)2 (76%), E: 1) LDA, MeI (86%); 2) LDA, MeI (62%); 3) H2, 5% Rh/C (98%), F: 1) TsNHNH2, BF3•Et2O; 2) MeLi (82% in 2 steps); 3) H2, 5% Pd/C; G: 1) HCl, MeOH; 2) PCC (90% in 3 steps)

Further, the enantiomer [(-)-5, $[\alpha]_D$ -1.2 °] of the silvl ether (+)-5 ($[\alpha]_D$ +1.2 °) was synthesized from the mono-acetate (-)-2.


Thus, we have accomplished ring differentiation of the decahydronaphthalene system via dissymmetrization of a meso 1,5-glycol (1) by lipase-catalyzed transesterification and provided an efficient approach to the enantio-divergent synthesis of sesquiterpenes having a drimane ring system.

The present method of dissymmetrization is easy to operate on a large scale and under mild conditions, and would provide us with a promising entry to the enantiodivergent synthesis of more highly functionalized terpenes.

REFERENCES AND NOTES

- Momose, T.; Toyooka, N.; Jin, M. Tetrahedron Lett. 1992, 33, 5389. 1.
- 2. Satisfactory analytical and spectra data were obtained for all new compounds. Optical rotations were taken in chloroform unless otherwise stated.

- Ho, T.-L. Enantioselective Synthesis, Natural Products from Chiral Terpenes; John Wiley and Sons, Inc.: New York, 1992. 3.
- 4. The Wieland-Miescher ketone and its homologue have extensively been used in the synthesis of a wide variety of terpenes, however, none of the chiral synthesis of the their analogue bearing an oxygenated angular substituent has been reported to date. See Mander, L. N.; Hamilton, R. J. Tetrahedron Lett. 1981, 22, 4115.
- Nishino, C.; Kawazu, K.; Mitsui, T. Agric. Biol. Chem. 1971, 35, 1921 5.
- Kubo, I.; Lee, Y.-W.; Balogh-Nair, V.; Nakanishi, K.; Chapya, A. J. Chem. Soc. Chem. Commun. 1976, 949. б.
- 7. Bianch, D.; Cesti, P.; Battistel, E. J. Org. Chem. 1988, 53, 5531.
- 8. The typical procedure is as follows: To a stirred suspension of 1 (0.5 mmol) and vinyl acetate (2 mmol) in iPr2O (10 mL) was added lipase AK (50 mg) immobilized on celite (200 mg), and the resulting suspension was stirred at 32-35 °C for 12 h. After filteration (celite) and removal of the solvent, an oily residue was fractionated by chromatography on a column (silica gel, 5g) to afford the oily mono-acetate [(-)-2, 136 mg, 96%] and the crystalline diol (1, 4 mg, 3.3%).
- Jansen, B. J. M.; Kreuger, J. A.; Groot, A. D. Tetrahedron 1989, 45, 1447. Wenkert, E.; Strike, D. P. J. Am. Chem. Soc. 1964, 86, 2044. 9.
- 10.
- 11. Jones, J. B.; Dodds, D. R. Can J. Chem. 1987, 65, 2397.